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S U M M A R Y  
In this paper it is shown numerically that axially-symmetric solutions of the Navier-Stokes equations, which describe 
the rotating flow above a disk which is itself rotating, are non-unique. The numerical techniques designed to calculate 
such solutions with a high power of resolution are given. Especially the behaviour in and around the first branching 
point is considered. It is found that for s = -0.16054 two branches coincide. The second branch has been almost 
completely calculated. It ranges back to positive values ofs. 

1.  I n t r o d u c t i o n  

The problem of a rotating fluid above an infinite disk which is itself rotating has received 
considerable attention both from a theoretical and a computational point of view. In the case of 
axially symmetric flow, the Navier-Stokes equations can be reduced to a set of two ordinary 
non-linear differential equations with appropriate boundary conditions. For  various values of 
the ratio s of the angular velocity of the fluid and of the disk, solutions have been obtained, albeit 
sometimes with considerable effort. However for values of s in the range-0 .160  > s > 
- 1.4351 it appeared to be impossible to find solutions, at least when no suction through the 
plate is applied. 

The first to observe that for negative values ofs problems might occur were Rogers and Lance 
in 1960 [1]. Evans in 1969 [2], Ockendon in 1972 [3] and Bodonyiin 1975 [4] have made more 
detailed studies of the situation, and it is now clear that for s = - 1.4351 the solution of the 
equations becomes singular. However at the other edge (i.e. near s = -0.160)  the situation is 
much more mysterious. Evans claims, somewhat cryptically, that the numerical method did not 
fail but that the trouble was entirely due to large gradients giving rise to a very small integration 
stepsize; whereas Bodonyi reports that his numerical method fails to converge for no apparent 
reason. An attempt to clarify the situation has been made by Weidman and Redekopp [5]. They 
use a series expansion around s = 0. From their results they try to obtain the behaviour of the 
nearest singularity. They propose that it is a4 power singularity at s = - 0.154. But the evidence 
they advance appears to be unconclusive. 

Theoretical investigations consider either the case s > 0, or they allow for suction through 
the plate. It is necessary in this case to mention the names of Hastings [6], McLeod [7], [8], [9], 
Bushell [10], H artman [ 11] and Lan [12]. Especially the investigations of McLeod should be 
recalled, since he establishes a number of interesting facts about the solution. Moreover he has 
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proved that a solution is not possible for s = - 1 and zero suction. In his investigations on the 
existence of a solution [8], he used a kind of shooting technique which starts from the 
asymptotic values far from the disk and relates those to the values at the disk. 

The numerical analogue of that technique is a basic tool in the present investigation. By its 
application it will be shown that the situation for the point where the solution becomes critical 
can be completely resolved. In fact we will show numerically that at the critical point s = 
-0.16054 two solution branches coincide. This conclusion is supported analytically in the 
Appendix by means of first-order perturbation theory near the critical point. 

In Section 2 we present the differential equations and asymptotic formulae for the solutions 
as well as some other facts which are interesting in order to obtain a check on the computations. 
In Section 3 the numerical techniques will be presented, whereas in Section 4 we give a thorough 
discussion of the results. This also includes a comparison with those of[I] ,  [2] and [5]. Finally 
we give some concluding remarks, containing lines for future work. 

2. The governing equations 

In a cylindrical coordinate system (r, 4), z) the disk is the plane z = 0, and the corresponding 
velocities are 

u = rf2f'(x), v = rf29(x ), w = -2(vg2)r (2.1) 

The angular velocity of the disk is s and x = z(f2/v) ~. A prime denotes differentiation with 
respect to x e [0, oo]. As has been shown (see for example Schlichting [-13]), the Navier-Stokes 
equations reduce in this case to 

f "  + 2f f"  = f ,2  + s 2 _ 92, (2.2) 

g" + 2fg' = 2f 'g.  (2.3) 

For zero suction the appropriate boundary conditions are 

x = 0 :  f=O,f'=O, 9 = 1 ,  (2.4) 
x = o o : f ' = 0 ,  g = s ,  

where sO is the angular velocity of the fluid at infinity. Since the asymptotic behaviour of the 
solution at infinity plays a fundamental role in our investigations we give here the necessary 
formulae. They were first given by Rogers and Lance [ 1] and later rigorously proved to be valid 
by McLeod [7]. They are, for x ~ 0% 

bp + cq cp - bq "~ 
f ~ a + ePX + q2 sin qx + p2 + q2 cos q x j ,  (2.5a) 

f '  ~ eV~{b sin qx + c cos qx}, (2.5b) 

f "  ~ eV~{(bp - cq) sin qx + (cp + bq) cos qx}, 

g ~ s + eW{c sin qx - b cos qx}, 

(2.5c) 

(2.6a) 
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g' ,,~ epX{ (cp + bq) sin qx + (cq - bp) cos qx}. 

The relation between a, p and q is given as follows: 

p2 _ q2 = _ 2ap, pq = - a q  + s. 

169 

(2.6b) 

(2.7) 

The second-order corrections to be added to the approximations (2.5)-(2.6) are given by 

f2 = cy e2p~, 92 = cg e2p~, (2.8) 

with similar relations for f2, f~' and g;. The constants c are 

(b 2 + c2)(2q2 _ pZ) s(b 2 4- c2)(q 2 - 5p z) 

c y =  2{(p 2 + q z ) E + s  2} , c o -  2(pE+q2){(pZ+q2)E+s2} " (2.9) 

In the course of our studies we will also make use of a different formulation of the problem. For 
this purpose we write for s # 0, 

tl = ax,  a = x / N ,  (2.10) 

and 

f(k)(x) = a k+ 1F(k)(tl) ' g(k)(x) = sakG(k)(tl). 

The new system in terms of ~ is 

F "  + 2FF" = F '2 + 1 - G e, 

G" + 2FG' = 2F'G. 

The boundary conditions in this case are 

F(O) = F'(O) = O, G(O) = 1/s, V ' ( ~ )  = O, G(oo) = 1. 

The asymptotic behaviour for t / ~  oo reads (F and G only): 

{ B P  + CQ CP - BQ } 
F , - , A + e  p" p z + Q 2  sinQt l +  p2+Q~2 cosQ~ + 

G ~ 1 + sign (s)ee"{C sin Q t / -  B cos Qt/} + C~e 2P", 

where 

p2 _ Q2 = _ 2 A P ,  PQ = - A Q  + sign (s), 

and 

C F 

CF e2Pn, 
2P 

(B z + C2)(2Q2 _ p2) (B 2 + C2)(Q2 _ 5p2) 

2 { ( p 2 + Q 2 ) 2 + 1 }  ' C a =  2(P 2 + Q z ) { ( P z + Q 2 ) 2 + l } "  

(2.11) 

(2.12) 

(2.13) 

(2.14) 

(2.15) 

(2.16) 

(2.17) 

(2.18) 
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As will be clear, we can consider the boundary value problem (2.2)-(2.4) also as a problem 
where we make use of the asymptotic formulae and where we find a solution of the system (2.2)- 
(2.3) such that the relations 

f ( x = O ; a , b , c ) = O ,  f ' ( x  = O ; a , b , c ) = O ,  g(x = O ; a , b , c ) =  l (2.19) 

are satisfied. 
The following important property was derived by McLeod [8], [9] 

f " (x ) f " (x )  + 9'(x)g"(x) < 0 (2.20) 

which means that the functionf "2 (x) + g'Z (x) is strictly decreasing to zero at infinity. From this 
it can be derived that the value off"(0) is positive, while the value ofg'(0) should be negative. 
Moreoverf(oe)  = a is bounded. 

In order to have an independent check on the numerical calculations, it is useful to consider 

the following equations 

f"2(0) - 9'2(0) = 4 f ( f  "2 - g'Z)dx, (2.21) 

fo f"(O)g'(O ) + -}s 3 - s 2 + �89 = 4ff"g'dx. (2.22) 

These results are derived by multiplying eqs. (2.2) and (2.3) by respectivelyf" and g' or g' and f" ,  
followed by subtraction and addition. 

3. The numerical approach 

In order to obtain solutions to the problem, two different numerical techniques have been used. 
The first method is a finite-difference technique applied to the problem formulation (2.2)-(2.4). 
This method uses central differencing and Newton iteration to solve the resulting set of non- 
linear algebraic equations. The second method is a shooting technique which produces more 

accurate results than the finite-difference method. The equations are integrated inward from 
infinity down to the origin. This approach is of the initial-value type, so that iteration is 
necessary in order to satisfy the boundary conditions at the disk. Two versions of the shooting 
method have been used. The first one is based on the formulation (2.12)-(2.14) and the second 

one uses the original formulation (2.2)-(2.4). 

3.1. Yhe finite difference method 
We rewrite the system (2.2)-(2.4) as follows 

f ' =  U, (3.1) 

U" + 2fu' -- U 2 + 9 z = S 2, (3.2) 

9" + 2f9' -- 2U9 = 0 (3.3) 
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with boundary conditions 

f(0) = u(0) = 0, 9(0) = 1, (3.4a) 

u(oo) = 0, 9(00) = s. (3.4b) 

The boundary conditions (3.4b) are applied at a finite value x = Xm, i.e., 

u(x, ,)  = O, g(x, , )  = s. (3.4c) 

The choice of x,, depends on circumstances. For  instance, the Rogers and Lance [ 1] solutions in 
the region 0 < s <_ 1 can be produced working with x m = 16 while the new solutions which we 
have obtained require a much larger range. The largest value of x,, in the present calculations 
with the finite difference method was 52. 

The mesh covering the range 0 < x < x,, is uniform with step size h and mesh points xj given 

by 

h = xm/N,  x j  = hj, j = 0(1)N. (3.5) 

All finite-difference calculations have been performed with step sizes h = 0.2, 0.1 and 0.05. 
Equation (3.1) is integrated by means of the trapezoidal rule and the equations for u and 9 are 

discretized by central differences. The system of equations for the quantitiesfj, uj and 9j reads 

h 
+uj)=0, j=  re)N, 

1 1 2 2 hE (uj+ 1 -- 2uj + u~_l) + ~-fj(uj+ 1 -- ui_l) -- uj + gj = s 2, j = I(1)N - 1, 

1 1 
h 2 (gj+l - 2gj + g j - 1 )  + ~ f j ( g j + 1  - g j - 1 )  - 2u f l j  = 0, j = I(1)N - 1. 

(3.6) 

This system of3N - 2 non-linear algebraic equationsis solved by means of Newton iteration. If 
n denotes the iteration index we set 

(,+1) (,) + 6u~,), a(,+ l) = a~.,) + 6g~), (3.7) 

and substitute this into (3.6), neglecting terms which are quadratic in the quantities 6. We then 
arrive at a system of equations which is linear in the Newton corrections 6. By arranging the 
solution vector ~") as follows, 

6r 6u]  r(.J " " " '  v J N - l ~  V t J N - l '  N - l '  (3.8) 

it is found that the band width of the system is 7 and the matrix routine which solves the 
equations takes advantage of this property in an obvious way. 

The iteration is ended if I[~")ll < ]0 -6. In all cases where the solution is non-unique the 
procedure appears to converge to one solution or the other depending on the starting values 

Journa l  o f  Engineer in  9 Math . ,  Vol. 11 (1977) 167-188 



172 P. J. Zandbergen and D. Dijkstra 

used to initialize the iteration. The only exception is a small neighbourhood of the critical point 
as will be further explained in Sec. 4.1. 

The converged solution contains the following errors. 
i) Round-offerror, due to the limited machine accuracy. 

ii) Truncation error, caused by the truncation of the iteration. 
These errors are neglibly small as compared with 
iii) Cut-off error, arising from the use of (3.4c) instead of (3.4b). 
iv) Discretization error introduced by the discretization of the differential equations. 
The cut-off error is made small by taking the upper bound x m of the integration range large 
enough. Error (iv) is reduced by means of Richardson extrapolation based on O (h 2). 

We conclude this subsection with some remarks concerning the accuracy and computing 
time of the finite-difference method. 

Accuracy. The Richardson extrapolation considerably improves the accuracy of the results as 

shown in the following table forf(oo) at s = 0. 

TABLE 3.1 

~eeffect~Richar~onextr~o~tionontheresultsobtainedwithxm=24 

h 2f(oo) extrapolated exact value 

0.2 0.881101 - 
0.1 0.883626 0.884468 

0.05 0.884262 0.884474 0.884474 

We infer that the finite-difference method can produce 5-6 significant digits forf(oo). However, 
the values for f"(0) and 9'(0) are less accurate since they are obtained by numerical 

differentiation. 

Computin 9 time. A full run through the range 0 < s < 1 with s = 0(0.1) 1 and x,, = 16 takes 12 
sec. for h = 0.2 on a Dec 10 computer. The time required for h = 0.1 is twice as large. 

3.2. 7he shootin 9 methods 
We first describe the meth o d which has been used to pass the critical region. The second method 
can be applied to the remaining part of the solution curve. 

With F (oo) = A prescribed the equations (2.12 ) and (2.13) are integrated from t / =  t/,, down 
to t / =  0. The integration is performed with a routine called Diffsys developed by Bulirsch and 
Stoer [14]. The initial values ofF, F', F", G and G' at t /=  t/,, are obtained from the second order 
asymptotic approximations (2.15)-(2.16) with guessed values for B and C. Note that the error in 
the initial values at t / =  t/,, if of the order exp (3Pt/,~) as compared with exp (Pt/,,) in the method 
used by Evans [-2]. The end point of the integration is t / =  0 where both F and F'  should vanish. 
With a fixed value ofF(oo) = A, we consider the quantities F(0) and F'(0) as functions of B and 
C. These parameters are iteratively determined in such a way that the boundary conditions 

F ( t /=  0; B, C) = F ' ( t /=  0; B, C) = 0 (3.9) 
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are satisfied. The iteration on B and C always appears to converge, provided that the initial 
values are selected properly. The value of s follows from the converged solution, viz. 

s = 1 / G ( O ) ,  (3.10) 

see eq. (2.14). Once the value ofs has been determined, the transformation (2.10)-(2.11) can be 
used to find the relevant quantities in terms of the formulation (2.2)-(2.3). No te that the solution 
automatically merges with the asymptotic behaviour (2.15)-(2.16) for large t/. In fact this 
property was used as a check on the calculations. Further, the checks (2.20)-(2.22) when 
translated in terms of the present variables - -  were always found to be satisfied within the 
accuracy of the calculation. 

TheideatoprescribeF(oe) = Ainsteadofsinthismethodappearstobecrucialwhenpassing 
the point where s = scr. The difficulty at s = scr is caused by the vanishing of the derivative ds/dA, 
see Section 4 and the Appendix. 

The present method fails at s = 0 (see eq. (2.10)). To remove this failure as well as to obtain 
results which can be compared with known results from the literature, a modified shooting 
method was developed. In this modified shooting method we use the formulation (2.2)-(2.4) 
with s prescribed. The shooting technique is the same as before (with second order asymptotics) 
on the understanding that now an iteration is performed on the parameters a, b and c, in order to 
satisfy the boundary conditions (2.19). For  s ~ 0 and s r scr the two shooting methods are 
found to produce the same results. 

Finally, some remarks are made concerning accuracy and computing time. 

Accuracy. With the shooting methods a high degree of accuracy can be obtained (working in 
double precision). This is illustrated by a comparison with the results of Weidman and 
Redekopp [5] at s = 0. 

TABLE 3.2 

A comparison with the results of Weidman and Redekopp at s = 0 

2f(oe) f'(O) -9'(0) 

present 0.8844741102096 0.5102326188673 0.6159220143994 
ref. [5] 0.88447411021 0.5102326188673 0.6159220143993 

(For a further comparison with the results of Weidman and Redekopp see Section 4.3.) 

Computing time. This depends strongly on the accuracy of the calculation, the choice of the 
starting point r/,, (which should be sufficiently large) as well as the quality of the starting values 
for B and C. Per value of F(oe) the time varies from 10 to 60 seconds on a Dec-10 computer. 

4. Discussion of the results 

In this section we will subsequently discuss the following items. In Subsection 4.1 we willgive an 
outline of the way followed to find the solutions. In Subsection 4.2 we present full details of 
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actual numerical results, while in Subsection 4.3 a comparison will be made with the results of 
Rogers and Lance [1], Evans [2] and Weidman and Redekopp [5]. 

4.1. 7-he construction of the solutions 
In the first place a start was made with the finite-difference method as described in Section 3.1. It 
was concluded that for s ~ -0 :16  the method failed to converge, but also that no sign of 
divergence was apparent. From the successive iteration steps it seemed that the solution would 
converge for about 3 or 4 steps and then jump to another level and converge again for 3 or 4 
steps. This then gave rise to the assumption that we had to do with two solutions close together, 
where the iteration process would jump from one solution to the other without having enough 
power of distinction between the two solutions. This assumption could be proved valid by 
changing the range of the calculation from the usual one used by Evans, i.e. 0 _< x _< 12, to a 
range with endpoints x m = 16 or x,, = 24 and carefully choosing the initial profile of the 
iteration. In this way it appeared possible to identify two apparently quite distinct solutions for 
the same value ofs. This has been illustrated in Figure 1, wheref '  has been given together with 
the corresponding value o f f ( ~ ) .  It will be clear that, although we now had evidence of the 
non-uniqueness of the solutions, we by no means had an accurate numerical solution of the 
original problem. In order to surmount this difficulty use was made of the method described 

in Section 3.2. 

0.15 

f' 
0.10 

0.05 

0 

-0.05 

-0.10 

Z : f ( |  

�9 n':  f(m~ = - 0 . 1 9  4 

Figure  1. Twosolutionsf'(x)ats = - 0 . 1 5 7 5  as cons t ruc ted  wi th  the finite difference m e t h o d  (x m = 24, h = 0.1). 

This method had proved its power already in a study of the B6dewadt problem and also here 
it gave the solution to our problem in a very easy and accurate way. This accuracy depends on 
three factors. Firstly, infinity is taken into account in the right way and such that the accuracy 
can be controlled. In the second place use is made of a very accurate and fast integration routine 
for the differential equations, and thirdly it appears that the stability of inverse shooting is much 
better than trying to find the solution by shooting from ~/= 0. This can be explained in part by 
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the fact that the gradients with respect to s of the determining quantities at infinity are orders of 
magnitude larger than those at the origin. Apart from accuracy an additional advantage of the 
inverse shooting technique is the fact that it is very easy to prescribe F(oo), leaving the quantity s 
as an output of the calculation, see eq. (2.14). Naturally, the question arose to find the second 
branch of the solution and to investigate its precise behaviour. Where will it end and how will it 
come to an end? 

In this paper we have not solved the last questions. The second branch is constructed, which 
bends backwards from s = scr = -0.1605387613 to positive values of s. We have strong 
evidence that there exists a second branching point near s -- + 0.09.* 

In order to construct the second branch, use was made of the various computational schemes 

0.2 

0.1 

0 i i i , 

-0 .1  

-f(eol 

-0.2 

-0.8 

- 0 . 4  

-0.5 

Figure 2. The vertical velocity at infinity as a function o f -  s. 

Sc r  

0:2 

0.6 

f"cO) ~ . 

-g'(o) 
0.4 

O.2 

01 I , 
-I -o:8 -o:8 -s  -o:, -o:2 o 0.2 

Figure 3. The quantities f"(0) and-#'(0) as a function of-s.  

* Note added in proof: Recent calculations produced for the value of the second branching point: s = 0.07452563. 
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as discussed in the previous section. In regions away from the branching points the difference 
scheme of Section 3.1 was used as a means to obtain basic information about the behaviour of 
the solution. Then afterwards the solution was calculated to full accuracy by using the shooting 
methods as described in Section 3.2. Away from the branching points the version with s 
prescribed was used, while in the neighbourhood of the critical points the method with F(oo) 
prescribed was applied. 

4.2. Results 
The perhaps most important result of the present investigation is contained in Fig. 2 where we 
give the quantityf(oo) as a function of s for the first and second branch. It is evident t h a t - -  near 

0.518 

0.505 
f'io) 

0.495 

0.485 

0.475 

-~cr 
0.;2 0.16 0.465i I ' 

-0.08 -0.~4 0 - s  0.~4 0.~0 

Figure 4a. The quant i tyf"(0)  as a function o f -  s (detail of fig. 3). 

0.62 
J 

0.60 ~ 

-g'10)0.88 --'g~(O)cr~ " ~ "  "" "'~''~ 

0.56 ]I / '  
s" 

f 
�9 ** -S. cr ! 

-0.08 -0. ;4 0 -s  0.04 0.o8 0.;2 0.16 

Figure 4b. The quantity - g'(0) as a function o f -  s (detail of fig. 3). 
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inf ini ty--  these solutions are quite different for the different branches of the solution. As will be 
evident from Figs. 3, 4a and 4b this is not the case for the quantitiesf"(0) and 9'(0) which vary 
only slightly with s. This seems to us one of the reasons why it is so difficult to obtain results by 
shooting from x = 0 as has been done by Rogers and Lance [1] and also in part by Evans [2]. 

4 
8 �84 

-z~Scr i 3 

1 , ! 
2 

ASo ! "s' 
. . . . . . .  0 

5 
-1 

0 . 3 4 0  0.341 0 . 3 4 2  0 . 3 4 3  - A  0 . 3 4 4  0 . 3 4 5  

Figure 5a. The quantities s and ds/dA as a function o fA  = F(oe)  near  the critical point. As = - 107 (0.160538 + s); 

As'= 104 ds/dA. 

6.(: 

5.E 

5.E 

5.4 

52 

5.G 

4.1 
3 

~ ~  13.5 

11.5 

~ g~ 9.5 
i Ag 

t 3.5 

I ZxS~r / 
. . . .  t | 1.5 
4 5 z~S 6 7 8 

Figure 5b. Variat ion o f f " (0 )  and 9'(0) with s near  the critical point. As = - 1 0  v (s + 0 .160538) ;  Af" = 105 ( f"(0)  

-- 0.4735); Ag' = 105 (g'(0) + 0.5732). 
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TABLE 4.1 
Results for the first solution branch (1) 

P. J. Zandbergen and D. Dijkstra 

s 2f(~) f"(0) -g ' (0)  

1.0 0 0 0 
0.9 0.10200741 0 , 0 9 5 9 3 5 6 5  0.09695077 
0.8 0.20800654 0 . 1 8 3 4 6 9 3 5  0.18759077 
0.7 0.31778953 0 . 2 6 2 1 5 1 3 6  0.27156095 
0.6 0.43077148 0 . 3 3 1 4 7 0 1 5  0.34843403 
0.5 0.54568250 0 . 3 9 0 8 3 9 1 6  0.41768942 
0.4 0.65998069 0 . 4 3 9 5 7 9 8 5  0.47867327 
0.3 0.76866766 0 . 4 7 6 9 0 0 4 4  0.53053067 
0.2 0,86169898 0 . 5 0 1 8 7 0 2 8  0,57208036 
0.15 0.89642794 0 . 5 0 9 3 8 8 6 1  0.58847271 
0.10 0.91761139 0 . 5 1 3 3 9 5 8 4  0.60155285 
0.05 0.91781860 0 . 5 1 3 7 3 1 0 1  0.61090263 
0 0.88447411 0 . 5 1 0 2 3 2 6 2  0.61592201 

-0.025 0.84862988 0 . 5 0 7 0 0 0 2 0  0.61653321 
-0.050 0.79413093 0 . 5 0 2 7 6 1 8 9  0.61565919 
-0.075 0.71359612 0 . 4 9 7 5 1 6 2 8  0.61304592 
-0.100 0,59450856 0 . 4 9 1 2 8 3 6 9  0.60828605 
-0 . t25  0.41179774 0 , 4 8 4 1 3 8 7 6  0.60058809 
-0.150 0.08941846 0 . 4 7 6 3 6 6 2 2  0.58746927 
-0.1525 0 . 0 3 8 8 1 3 4 8  0 . 4 7 5 5 9 5 0 7  0.58548370 
-0.1550 -0.01990371 0 . 4 7 4 8 4 2 3 4  0.58319556 
-0.1575 -0.09236631 0 . 4 7 4 1 2 7 4 6  0.58038111 

TABLE 4,2 
Results for the second solution branch (I1) 

s 2f(oo) f"(0) --g'(0) 

0.07 --0.31733586 0 . 4 9 4 6 2 7 4 5  0.56232679 
0 . 0 6  --0.06011790 0 . 4 9 5 8 0 6 0 5  0.56266423 
0.04 0.24862538 0 . 4 9 7 6 0 8 8 9  0.56324042 
0.02 0.39569075 0 . 4 9 8 6 8 5 0 8  0.56361641 
0 0.44772333 0 . 4 9 9 0 4 2 9 5  0.56374644 

--0.025 0.42453859 0 . 4 9 8 4 8 3 5 9  0.56354428 
--0.050 0.32997008 0 . 4 9 6 7 9 9 1 0  0.56297300 
--0,075 0.17964509 0 . 4 9 3 9 6 7 6 3  0,56215245 
--0.100 --0,01446720 0 . 4 8 9 9 4 1 3 7  0.56134736 
--0.125 --0.23285212 0 . 4 8 4 6 1 3 2 8  0.56118094 
--0.150 --0.40472151 0 . 4 7 7 6 5 3 2 5  0.56392059 
--0.1525 --0.40840854 0 . 4 7 6 8 2 3 7 0  0.56472004 
--0.1550 --0.40472036 0 . 4 7 5 9 5 1 8 8  0.56579413 
--0.1575 --0.38794265 0 . 4 7 5 0 1 8 0 6  0.56736644 
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TABLE 4.3a 

Results for both branches near the critical point. 
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- A  - s  - f ( ~ )  if(O) -g'(O) 

0 0.1542001134 0 0.4750803572 0.5839697645 
0.05 0.1557387474 0.0197318744 0.4746257207 0.5824356418 

0.10 0.1570965436 0.0396354063 0.4742386727 0.5808899655 

0.15 0.1582621396 0.0596732615 0.4739242956 0.5793308932 

0.20 0.1592195757 0.0798046554 0.4736891643 0.5777548562 

0.25 0.1599454450 0.0999829501 0.4735423386 0.5761556910 

0.30 0.1604035790 0.1201512468 0.4734972040 0.5745229913 

0.35 0.1605339313 0.1402334004 0.4735752972 0.5728386247 

0.40 0.1602252434 0.1601125821 0.4738156564 0.5710681012 

0.45 0.1592274505 0.1795649151 0.4743045866 0.5691327354 

0.50 0.1566488901 0.1978944732 0.4753451903 0.5667486507 

TABLE 4.3b 

~lues ~s,  ff(O) and g'(O)~r a given value ~ A  = F ( ~ ) ; ~ )  = F ( ~ )  ~ - s .  

- A  - s  if(o) -V(o) 

0.325 0.1605149552 0.4735189969 0.5736888721 

0.330 0.1605265647 0.4735273479 0.5735202436 

0.335 0.1605343852 0.4735371121 0.5733509413 
0.340 0.1605383027 0.4735483293 0.5731809298 

0.3425 0.1605387600 0.4735544961 0.5730956464 

0.345 0.1605381951 0.4735610424 0.5730101712 

0.350 0.1605339313 0.4735752972 0.5728386247 

0.355 0.1605253705 0.4735911427 0.5726662463 

0.360 0.1605123612 0.4736086318 0.5724929887 

0.365 0.1604947394 0.4736278216 0.5723188007 

TABLE 4.3c 

Derivatives of relevant quantities, obtained by numerical differentiation in Table 4.3b. 

- A  103 ds/dA lOd2s/dA z -103 df"(O)/dA --lOZdg'(O)/dA 

0.330 1.943 1.516 1.812 3.379 

0.335 1.174 1.561 2.098 3.393 

0.340 0.381 1.610 2.393 3.408 

0.3425 --0.022 1.636 2.543 3.415 

0.345 --0.437 1.662 2.697 3.423 
0.350 -- 1.282 1.719 3.010 3.439 

0.355 -2.157 1.779 3.333 3.456 

0.360 -- 3.063 1.845 3.668 3.474 
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TABLE 4.4a 

Values o f  s, F"(O) and G'(O) for  a 9iven value o f  A = F( ov ) near the eritieal point. 

- A  - s  F"(0) G'(0) 

0.3400 0.1605383027 7.362008391 8.910944361 

0.3405 0.1605384752 7.362015235 8.910665066 

0.3410 0.1605386073 7.362025089 8.910389017 

0.3415 0.1605386988 7.362037962 8.910116222 

0.3420 0.1605387498 7.362053865 8.909846692 

0.3425 0,1605387600 7.362072807 8.909580436 

0.3430 0.1605387293 7.362094797 8.909317465 

0.3435 0.1605386576 7.362119845 8.909057788 

0.3440 0.1605385448 7.362147962 8.908801416 

0.3445 0.1605383906 7.362179157 8.908548359 

0.3450 0.1605381951 7.362213440 8.908298626 

TABLE 4.4b 
Derivatives o f  relevant quantities obtained with eqs. (A.3)-(A.6). 

- A  - 103s2Gl(0) = lOd2s/dA z - 102F~(0) = 10G'I(0) = 

= 103ds/dA (num.) = -102dF"(O)/dA = lOdG'(O)/dA 

0.3400 0.385197 - 1.068365 5.618286 

0.3405 0.304583 1.6148 1.669456 5.553478 

0.3410 0.223714 1.6199 2.272436 5.488477 

0.3415 0.142589 1.6251 2.877319 5.423282 

0.3420 0.061205 1.6303 3.484120 5.357890 

0.3425 -0 .020438 1,6355 4.092855 5.292301 

0.3430 -0 .102343 1.6407 4.703537 5.226512 

0.3435 -0.184511 1.6460 5.316183 5.160523 

0.3440 -0 .266946 1.6514 5.930806 5.094331 

0.3445 -0 .349647 1.6567 6,547424 5.027936 

0.3450 -0 .432618 - 7.166051 4.961335 

In Tables 4.1 and 4.2 we have presented accurate values of the relevant quantities for different 
values ofs along both branches. In Tables 4.3a,4.3b and 4.3c more detailed results are presented 
for the surrounding of the first branching point. The precise location of this critical point has 
been calculated from the results in Tables 4.4a and 4.4b which have been obtained by using an 
additional set of perturbation equations as given in the Appendix. A graphical representation of 
these results is given in Figs. 5a and 5b. The curve in Fig. 5a can be accurately represented by 
means of the parabola 

s = -0.1605387613 + 0.08171 (A + 0.34237498) 2, A = F(~) .  (4.1) 

Inversion of the result (4.1) yields in terms of a = f ( ~ )  the approximation 

f ( ~ )  = -0.13718037 ___ 1.402 (s + 0.1605387613) ~ (4.2) 
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where the upper sign corresponds with branch I of the solution and the lower sign with branch 
II. Similarly, the derivatives at the origin are found to be 

f"(0)  = 0.47355418 T 0.008866 (s+0.1605387613) �89 

9'(0) = -0.57309992 T 0.1194 (s + 0.1605387613) ~. 

(4.3) 

(4.4) 

1 

- f ix) 

0.5 

It will be clear that these approximations are valid only in the asymptotic sense s ~ scr. 
Approximations with a larger range of validity will be considered in Subsection 4.3. 

What now are the most significant differences in the results for the same value of s? We have 
illustrated this in Figs. 6a, b and c for s = 0, which is the original von Karman case. 

-0.5 

- f ( |  
] 
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F i g u r e  6a. The  t w o  ver t ica l  velocit ies for  s = 0. 

0.2 
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fix) 
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-0.1 

~0.2 
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F 
, 2  x , 8  2 0  2 4  

F i g u r e  6b. T h e  t w o  r a d i a l  velocit ies for  s = 0. 
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0.8 

g(x) 

0.4 

Figure 6c. The two tangential velocities for s = 0. 

24 

The already known solution is in fact a simple boundary layer type flow. The second solution, 
however is totally different away from the disk. The yon Karman boundary layer again is 
present, nearly unperturbed, but now a second layer is present with strong counter rotating 
velocities together with large vertical velocities. This second layer also is much thicker than the 
boundary layer. 

Considering these results a few remarks can be made. In the first place the question of stability 
arises: would it be possible to construct the solution as a Cauchy problem in time? A definite 
answer can not be given as yet. But there is one strong indication for stability namely that these 
solutions can be calculated iteratively by means of the difference method. It would of course also 
be interesting to design experiments in order to prove that these second solutions do exist 
indeed in physical reality. 

The last remark is that the existence proof as given by McLeod for s > 0 is not valid for the 
second branch since the basic assumption in the proof i.e. 9(x) > 0, is violated. 

4.3. Comparison with previous investigations 
Rogers and Lance [-1] and Evans [2-] also have obtained results for the problem with zero 
suction. In all cases they present, the range of integration is 0 -< x _< 12 which as will be clear 
from our investigations leads inevitably to inaccurate results for negative values of s. A 
comparison is made in Table 4.5 which underlines this conclusion. Evans also discussed the case 
with suction. It will be evident, that our methods are also very suited to deal with this problem, 
although we have not considered this case here. 
In [- 15], Bodonyi gives a time dependent method which he also uses to find results for stationary 
problems. Results of this kind are included in [4] as well. Since his method is a difference method 
of an order of accuracy in the stepsize comparable to that of Section 3.1, his results are only 
accurate in about 3 digits. Moreover as we have made clear, such a method is, at least in its 
present shape, unable to resolve the situation near a branching point. Therefore the question, 
whether or not, the occurrence of limit cycles is a basic phenomenon in the time dependent case, 
seems to be worthy of a reinvestigation. 

A special case to give attention to is furnished by a paper of Weidman and Redekopp [5], 
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TABLE 4.5 

Comparison with the results of Rogers and Lance [1] and Evans [2]. 
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Rogers and Lance Present results 

s 2f(oo) --g'(0) 2f(oo) --9'(0) 

0.9 0.10201 0.096951 0.10200741 0.09695077 

0.8 0.20801 0.187591 0.20800654 0.18759077 

0.6 0.43077 0.348434 0.43077148 0.34843403 

0.4 0.65996 0.478673 0.65998069 0.47867327 

0.2 0.86175 0.572080 0.86169898 0.57208036 

0.1 0.91769 0.601554 0.91761139 0.60155285 

0 0.88446 0.615922 0.88447411 0.61592201 

--0.05 -- 0.615676 0.79413093 0.61565919 

--0.10 -- 0.608253 0.59450856 0.60828605 

Evans Present Results 

- s F ( 0 )  - -  9 ' ( 0 )  f M ( 0 )  - 9 ' ( 0 )  

0 0.51022912 0.61591916 0.51023262 0.61592201 

0.1 0.49130550 0.60825056 0.49128369 0.60828605 

0.15 0.47627301 0.58761507 0.47636622 0.58746927 

0.16 0.47332988 0.57766748 0.47353360 0.57600559 

presented at the Biennial Fluid Dynamics  Sympos ium 1975 in Poland.  They calculate a series 

expansion for the quantitiesf~o,f"(O ) and 9'(0) in s about  s = 0. Then they use the so called 

D o m b - S y k e s  plot to investigate the behaviour  of  the singularity of the series expansions. That  

means that  they plot the ratio of  succeeding coefficients c, as a function of  1/n and conclude from 
their results that  there should hold approximately  

foo = -21 .818205(s  + 0.1433) ~ + 2.0783525 + 15.788395s 

+ 12.2026s 2 - 6.934s 3 + 4.4095s 4 + 0.53s s, 

f"(O) = 0.206226(s -t- 0.1433) ~ + 0.494768 - 0.034579s 

- 0.96315s 2 + 0.4186s 3 - 0.256s 4 + 0.079s 5, 

9'(0) = 1.263029 (s + 0.1433) ~ - 0.710635 - 0.82963s 

+ 0.01944s 2 + 0.0115s 3 + 0.003s 4 - 0.007s 5. 

(4.5) 

(4.6) 

(4.7) 

It  will be quite clear that  they infer f rom their results, that  there is a singularity with a 4 power 

and that  this singularity occurs approximately  for s -- - 0.1433. They propose  that  inclusion of  

more  termsin the series expansion should shift thelocat ion of the singularity to s = - 0.154, the 

point  wherefo o vanishes. According to our  results these conclusions are wrong in the sense, that  
neither the type nor  the place of the singularity are correct. On  the other  hand, there is no doubt  
that  the numerical  results Weidman  and Redekopp present for the series expansion a round  
s = 0 are accurate. Wha t  then went wrong? 
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The reason can be seen by considering for instance eq. (4.2). It  follows from this equation that 

there should hold 

f~  = 1.402(s + 0.1605387613) ~ + Z cf .*  
i=o 

(4.8) 

Now using the values Weidman and Redekopp calculated, it is easy to find the first coefficients 

c i. It turns out that there should hold 

f~  = 1.402(s + 0.1605387613) ~ - 0.11951 - 1.1844s - 2.7784s 2 

+ 12.037s 3 - 42.390s 4 + 153.62s 5 - 594.06s 6 + 2456.5s 7 - 10831s 8. (4.9) 

We now calculate the value off~ for s = - 0.1605387613. It turns out that according to eq. (4.9) 

f~  = - 0.11702 whereas according to eq. (4.2) the correct value should bef~ = - 0.13718. This 
means that even the corrected series is way off of the correct result, and that we should need 

much more terms to get the correct results. But then it should be clear that an analysis of the 
singular behaviour based on the first terms can lead and in this case actually does lead to wrong 

results. As can be seen from Figs. 4a and 4b the singular behaviour forf"(0) and g'(0) also is very 

locally, which for these cases too, leads to the expectation that many terms more in the series are 
needed to predict adequately the right behaviour. This then at the same time should yield a 
serious warning, when using the Domb-Sykes  plot, to make oneself sure that the power of the 

singularity and its location have settled down. 

5. Conclusions 

In the course of our investigations on the problem of the counterrotating fluid above a flat 

rotating plate, we have shown that this problem (which is governed by the full Navier-Stokes 
equations) is non-unique. Effective numerical methods have been devised to deal with such a 

situation. We have calculated the second branch and we feel that these solutions exhibit 

peculiarities which are extremely interesting to all those working in this field, be it on subjects of 
meteorology or of oceanography or of geophysics. We believe that these methods can also be 

used for other interesting problems related to rotating flow, for instance the vortex source flow 
as treated by Cham [16], or the problem of two disks. 

A number of interesting problems remains to be solved. Is it possible to give existence proofs 

for the new solutions? Can these solutions also be found as the stationary solution ofa  Cauchy 

problem, i.e. are they stable in a mathematical sense? As we have said, we believe they are. Thus 
the next question is to show experimentally that such solutions occur or may occur. Another 
point is the construction of the rest of the solution branch. We think that the curve ultimately 
will go to the point f~o = 0, s = 0, but more analytical work will be needed to clarify the 

situation. 

* Note added in proof. It will be clear that (4.8) is not an expansion for s ~ scr. It should be regarded as some kind of 

approximation identical to the Weidman and Redekopp approach and set up to demonstrate the failure of this 

approach. 
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Appendix. First-order perturbation theory near the critical point 

In this section we present further analytical background concerning the behaviour of the 
solution near the critical point scr. From the numerical results it is already clear that the solution 
has a square root singularity in terms of s at the critical point. Therefore, we could set up an 
expansion of the following form 

f = f o  + x/s - serf1 + . . . .  s ~ s~r. (A.1) 

Together with g, this leads to an additional set of differential equations for f l  and 91 which 
requires numerical integration. Since numerical methods with s prescribed are doomed to fail 
near sc~, we discard expansion (A.1) and set up an expansion in terms of the formulation (2.12)- 
(2.14) with F(oe) -- A as the independent parameter. Near the critical point A~, all quantities 
vary linearly with A, except s which varies quadratically (see Tables 4.3b and 4.3c). The 
expansion in terms of A is regular and can also be used for points A o different from A~r. This is 
another advantage of this approach as compared to (A. 1). The expansions are taken as 

F = F o + (A - A o ) F  1 + . . . ,  G = G O + (A - A0)G 1 + . . . ,  A = F(oe). (A.2) 

The functions F 0 and G o satisfy the original problem (2.12)-(2.14) with F0(oe ) = A o pre- 
scribed. The equations governing the perturbations F 1 and G 1 can be obtained by substituting 
(A.2) in (2.12)-(2.14). Equivalently, we can differentiate the problem with respect to A. The full 
set of resulting equations reads 

F o' + 2 F o e  o - Fo 2 + G 2 = 1, 

G o + 2FoG o - 2FoG o = 0; (1.3) 

F~' + 2FoF'  ~ - 2FoF '  1 + 2 F o F  1 + 2GoG 1 = O, 

G'~ + 2FoG'  1 - 2FoG ~ + 2GoF , - 2GoF'  ~ = 0. (1.4) 

The boundary conditions are 

F 0 ( ~ )  = A o, F 0 ( ~  ) = 0, Go(W ) = 1, Fo(0 ) = 0, Fo(0 ) = 0, (A.5) 

F I ( ~  ) = 1, F ' I (~  ) = 0, G I ( ~  ) = 0, FI(0 ) = 0, F'x(0 ) = 0. (A.6) 

Note that the equations governing F 1 and G 1 are linear and homogeneous. The solutions F 1 
and G 1 are induced by the condition F 1 ( ~ )  = 1. Further, the quantity s does not appear in the 
problem. The parameter s is an output of the calculation, viz. 

So = 1/Go(0), (A.7) 

see eq. (2.14). 

In addition we now have an analytical expression for the derivative ds/dA. This is given by 

( d s )  = _ S g G l ( 0 ) .  (A.8) 550 
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At the critical point the quantity s is stationary hence 

A o = A~ ~ s o = scr, = 0.. (A.9) 
o 

In other words, the critical point is determined through the additional condition 

G~(O) -- O. (A.IO) 

The numerical method to find the critical point is obvious: solve the system (A.3)-(A.6) in the 
neighbourhood of the critical point and then iterate on A o until (A. 10) is satisfied. To solve (A.4) 
by inverse shooting as described in Sec. 3.2, we need the asymptotic behaviour for large t/of the 
functions F 1 and G1. To first order this follows from the equations 

F;'  + 2AoF ~ + 2G 1 = - 2Fo,-" 

G~ + 2AoG' a 2if' 1 - ,  - -  = - 2 G o ,  (A.11) 

where ff~ and Go are first-order asymptotic expressions which can be found from eqs. (2.15) and 
(2.16). The solution of (A.11) is found to be (F' 1 only) 

F'  1 = ~eV~ sin Qoq + Co cos Qoq) + eP~ sin Qot/+ C 1 cos Qot/), (A.12) 

where 

Bo = - - B o  

Co ~ - Bo 

p2 + AoPo + Q~ AoQo 
(Po + Ao) 2 + Qo 2 + CO (Po + Ao) 2 + Q2, 

AoQo p~ + AoPo + Q2 
(Po + Ao) 2 + Qo 2 - C~ (Po + Ao) 2 + Qo 2" 

(A.13) 

Another interesting method to obtain this result is the following. The first-order asymptotic 
approximation to F'  for large t/follows from (2.15) and is given by 

F' ~ eV"(B sin Q~/+ C cos Q~/). 

Differentiating this with respect to A we obtain 

, , e ) f / d ,   " )cos } dA ",tle ~ ( \ B ~ - C d A / s i n Q t l +  \ dA + dA/  Qtl 

dc ) + e," ( d B  sin QJ/+ cos Qq . (A.14) 
\ dA dA 

Calculating the derivatives from (2.17) and using (A.2) we obtain (A.12). In other words the 
asymptotic behaviour of the perturbation is equal to the perturbation of the asymptotic 
approximation. A further consequence of (A.14) is 
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B 1 = C 1 = 

o' o 

which can be used as a check on the numerical results. 
We observe that the first term in the result (A. 12) is a particular solution of (A. 11 ), and that the 

second term is a solution of the homogeneous problem. The two degrees of freedom in the 
homogeneous solution can be used to satisfy the boundary conditions (A.6) at the origin. 

The numerical method to solve the critical problem is now briefly described. We select an 
interval in which the critical point is contained. From Table (4_3b) this is taken as 

-0 .345 __< A o =< -0.340. 

With A o = -0 .345 (0.0005) - 0.340, the problem (A.3) with boundary conditions (A.5) is 
solved using the method described in Section 3.2. This is done with an accuracy of ~ 10 digits. 
With the resulting values for the asymptotic parameters B o and Co, the quantities B o and G o are 
calculated from (A. 13). 

At this stage, the first-order asymptotic approximation (A.12) is known, except for the 
constants B 1 and C r Next, the full problem (A.3)-(A.6) is solved in the same points A o as above. 
The only iteration in the full problem is one on B I and C~ (to satisfy (A. 6) a t the origin), since B o 
and C o have been calculated already in the first stage, so that the conditions (A.5) at the origin 
are automatically satisfied. We observe that one iteration step on B 1 and C1 is sufficient since 
the problem (A.4) is linear. 

The results of the calculation are tabulated in Tables 4.4a and 4.4b and graphically 
represented in Figs, 5a and 5b. 
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